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Abstract. The kinetic equation for a copolymerisation system is established following 
Flory's two assumptions. We solve the kinetic equation for the A, + A ,  system with arbitrary 
initial conditions. The exact solution for a copolymerisation system with constant deposi- 
tion is also obtained. The post-gel solutions corresponding to Stockmayer's and Flory's 
models are investigated. The pre-gel solution to the kinetic equation for the A, + A ,  system 
with arbitrary initial conditions is given. 

1. Introduction 

The statistical theory of condensation polymerisation was established many years ago. 
For some simple models, Flory (1936) obtained the size distribution using a probability 
argument. Later a more elaborate statistical method was used by Stockmayer (1943) 
and the size distribution, as well as the gelation condition, were obtained for a general 
f-functionality system, the system with A, + A, basic units and the system with A,, + A, + 
B2 basic units. Stockmayer (1944, 1952) also established a theory of condensation 
polymerisation systems with arbitrary functionalities. 

In  the appendix of the paper by Stockmayer (1943), the author mentioned that the 
size distribution for an f-functionality system can be derived from the kinetic equation 
written by him. The kinetic equation written by Stockmayer is a special case of the 
general coagulation equation 

where c,(t) is the concentration of k-mer at time t. The two terms on the right-hand 
side of the equation are the usual gain and loss terms. 

Equation (1) was first established by Smoluchowski (1916), and has been investi- 
gated by many authors since. Because of the applications of the coagulation equation 
in aerosol physics, the continuous version of equation (1) has been studied extensively 
(Drake 1972). For the development connected with the exact solution of the discrete 
equation, for some special kernels and the exact solu+:on for arbitrary initial conditions 
see McLeod (1962), van Dongen and Ernst (1983, 1984), Ziff et a1 (1983), Bak and 
Lu (1987) and Lu (1987). 

Obviously, the Smoluchowski equation discussed above can only describe the 
coagulation process in a system, where the particles are composed of only one kind 
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of basic units. The coagulation equation for multicomponent systems has been investi- 
gated by some authors. Gelbard and Seinfeld (1978) investigated the multicomponent 
aerosol balance equation including coagulation and growth, and the kinetic equation 
with a constant coagulation coefficient and  linear growth laws was solved. The coagula- 
tion equation for the two-component system was investigated by Lushnikov (1976). 
Lushnikov considered the case when the collision frequency is independent of the 
particle composition, but remains dependent on the total masses of the coagulation 
particles. The multicomponent coagulation equation is generally difficult to solve, but 
it is useful in establishing kinetic theories concerned with various interesting 
phenomena. 

In this paper, we study the kinetics of copolymerisation, i.e. coagulation in a system 
with two kinds of basic units. After the work of Stockmayer, the A, + A2 and A, +A,  
systems for antibody-antigen reactions were also investigated by Goldberg ( 1952a, b). 
Macken and  Perelson (1985) reviewed and  extended the results for multicomponent 
mixtures by using branching theory, combined with a rate-equation approach, which 
gives an  explicit expression for the extension of a reaction as a function of time. 

The essence of the branching theory, as pointed out by Whittle (1965), is a disguised 
treatment of certain combinatorial problems. The question is, firstly, to see if we can 
obtain the explicit size distribution directly from the kinetic equation and, secondly, 
to see if the kinetic theory can give some results which may not be easy to obtain by 
using stztistical methods and branching theory. Following Flory’s assumption of equal 
reactivities, the detailed forms of the coagulation equations corresponding to the system 
containing particles composed of A f  and A, basic units, and the system containing 
particles composed of A, and B, basic units, are ascertained. Then we define the 
moments and derive a general equation for the moments before ‘gelation’. We solve 
the equation with polydisperse initial conditions and  give the general solution in terms 
of a configuration number determined by a recursive relation. For a special kind of 
polydisperse initial conditions, for which all the initial particles are of only two kinds, 
one containing only f-functionality units with a size distribution C~ ,~ (O) ,  and  the other 
containing only bifunctional units with size distribution co,(0), we obtain the explicit 
form of the size distribution. In addition, we also consider a case with deposition and 
an  explicit solution is obtained. We also obtain the post-gel solution corresponding 
to the Flory and the Stockmayer models respectively. Finally, the kinetic equation for 
the system A, + A g  is solved and the pre-gel solution is given. Before ending this 
introduction, we want to mention the shortcomings of the kinetic description of 
polycondensation based on Flory’s two assumptions. It neglects the excluded-volume 
effects between growing molecules and the change in local viscosity due to polymeri- 
sation. 

2. Kinetic equation and moments 

The general form of the kinetic equation for a copolymerisation system can be written 
as 

p - y = l  

where c k l (  I )  is the concentration of the particles for which the number of one kind of 
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basic units is k, and the number of another kind of basic units is I. K,,,,, is a rate 
constant for the irreversible reaction between molecules ip and molecules j q .  

The detailed form of the rate constant K , , , ,  depends on the model we consider. 
The simplest model is the one in which the basic units all have the same kind of 
functionalities. Considering this simple model, we have two kinds of systems: the 
A,+ A ,  system and the A ,  + B, system. Following the assumption of equal reactivity, 
i.e. that reactivities of the identical functionalities are independent of the size of the 
polymer, we have 

K,P.J, = ajPalq (3) 

J, = alp ( A )  ( + a!/l ( ( A )  (4) 
corresponding to the A,  + A ,  and the A,+ Bg models, respectively. In (3 )  alp is the 
number of free functionalities of ip molecules and we obtain easily that 

( 5 )  alp = (f- 2) i  + ( g  - 2)p + 2 .  

In (4), a, ,(A) is the number of free functionalities of type A in ip molecules, and 
U , ~ ( B )  is the number of free functionalities of type B in the ip molecules. We have 

a , , ( A ) = ( f - l ) i - p + l  ( 6 )  

( 7 )  
The special model which Stockmayer investigated is the system A,+ A>; in this case 
we have 

alp( B )  = ( g  - 1) i  - p  + 1. 

(Tkl=(f -2)k+2=Uh (8) 
and  the corresponding kinetic equation can be written as 

C [(f - 2) i + 21[(f - 2 ) j  + 21 clPclq - [ ~f - 2) k + 21 (9) 

Obviously, in writing equations (2)  and (91, Flory's second assumption, i.e. the neglect 
of ring formation, has been used. 

In this paper, we concentrate on solving the kinetic equation (9) and the kinetic 
equation 

1 [(f - 2) i + 21 clP. 
dch, 1 - - .. 
d t  -' , + ] = A  1.P 

p - q = l  

p+,=I 

- ckI 1 [ (f - 2)  k + 2 + ( g  - 2) I + 2][ (f - 2) i + ( g  - 2)p + 2]c,,. 
1.P 

The kinetic equation for the A, + B, system can then be solved in the same way. 

evolution of the moments is useful. We define the moments as 
To investigate the fundamental behaviour of the copolymerisation system, the 

M,,,, = 1 k"' l"ck1( t ) .  
h.1 

We have Moo=  X k , l  c A I ( t ) ,  which is obviously the total number of molecules at time t ,  
and Mol  + MI, which is the total number of basic units in the system. Multiplying (2)  
by k"'l" summing over all possible k, I and rearranging the terms, we have the moment 
equation 
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This equation is only valid up to a 'gel point', at which the conservation of mass will 
be violated. 

3. The size distribution for the A/+ A2 system with polydisperse initial conditions 

We consider the kinetic equation (9) with initial conditions 

C L / (  f = o )  = c k / ( o ) .  (13) 

Introducing the following transformations: 

r = lo' exp( -2 lo' p (  t " )  dt") d t '  

where p (  t )  =E!,,/ ck/ukl is the total number of free functionalities, we then have 

which has the following solution: 
k + /  

XI/  = Nk/hrh-'. 
I ,  = I 

Substituting (17)  into (16) and  comparing the coefficients of the same power of r, we 
have the recursive relation 

(18) ( h  - 1 ) N k / h  = 4 [ ( f - 2 )  i+21[(f-2)j-t  21 Ntpr&g 
r + , =  !, 
p + q  = /  
e + p =  il 

with Nkr, = ~ ~ ~ ( 0 ) .  
Before gelation, we have 

Hence we have 

where po = Z,,/ c,,(O)CT,, is determined by the initial conditions. N k / h  and the recursive 
relation (18) have a physical explanation. N,,,, is the configuration number of aggregates 
composed of k f-functionality units and I bifunctional units, and h initial particles. 
Because the aggregate is composed of h initial particles, i t  has ( h  - 1 )  new bonds. It 
can be separated in ( h  - 1)  places into two particles. One is composed of i f-function- 
ality units, p 2-functionality units and e initial particles, and the other is composed 
of j f-functionality units, q 2-functionality units and g initial particles, with i + j = k,  
p + q = 1 ,  e + g = h. The right-hand side of (18) is the total number of ways we can 
separate the molecule, which is equal to ( h  - 1) times the number of ways the reverse 
process to build up  the kl molecule out of h initial particles can be performed. 
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One of the special kinds of polydisperse initial conditions is that for which in the 
initial state there are only two special kinds of particles, one containing f-functionality 
units only with the size distribution C k o ( 0 )  and the other containing bifunctional units 
only with the size distribution c , , (O) .  For these special initial conditions, we can obtain 
an explicit solution written in a compact form: 

( f - 2 ) k + 2  t I l t m - '  x(G) (G> ( 2 2 )  

where the summation goes over all possible { n , } ,  { r , } ,  which satisfy X,jn, = k, X, jr, = 1 
and m =X,n , ,  n =X, r,. The mathematics required to obtain ( 2 0 )  is given in the 
appendix. 

It is interesting to look at some special cases of (22). When C k o ( 0 )  = N6kI and 
col = Lall ,  the result becomes 

k + / - l  [(f- l ) k +  I ] !  t 
[ (f- 2) k + 2 ] !  k !  I !  ckl = 

( I  - 2 l k + 2  

( 2 3 )  

which agrees with the result obtained by using a statistical method and branching 
theory. The other special case is cko( t = 0) = C k o ( 0 )  and col( t = 0) = 0. This is the case 
of a single-parameter coagulation equation with polydisperse initial conditions. From 
the appendix, it is not difficult to obtain the result 

[(f- 2 ) k  + m ] !  ( 1 ) " - 2 ' k + m + '  
f m - l  [u,c, (0)l"i. (24) 

[ ( f - 2 ) k + 2 ] !  l c  II, n, !  1+POt I 
c , ( r )  = 

Since we have published this result in a previous paper (Bak and Lu 1987) we shall 
not discuss this result here in detail. 

4. Copolymerisation with a constant deposition 

In this section, we give a slight extension of the A, + A2 copolymerisation system by 
including a constant deposition. To our knowledge the explicit size distribution is not 
easy to get using branching theory, while the kinetic method gives the exact result 
without any difficulty. 

The kinetic equation in this case is 

p + q = /  

We consider monodisperse initial conditions, with 
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Introducing the transformations 

we have the same kinetic equation as (16). The solution is 

[ ( f - l ) k + I ] !  
[ ( f -2)k+2]!  k !  I! xkl = 

Before gelation we have 

1 - exp( - s t )  

s + (fN + 2L) [  1 -exp(-st)] 
T =  

( I - 2 i k - 2  
S 5,' s d t )  =e-"( s + ( f N + 2 L ) (  1 -e-5')  exp( -lo' [ ( f - 2 ) k + 2 ] p ( t )  di'+ 

We then have the explicit size distribution 
( I - - Z i k + Z  [(f- l )k+2] !  S 

exp( - ~ t ) ( f N ) ~ ( 2 L ) '  e-" 
[ (f - 2)k -t 2 ] !  k ! l !  ckl = 

k + / - 1  1 - exp( - s t )  ( s S  ( fN +2L)(1  -e-") 

When f+ CO, the analytical form of t ,  is simple: 

The post-gel solution can be obtained easily following the method illustrated in the 
next section. 

5. Post-gel solutions 

After gelation, there are two models for condensation polymerisation. One is the 
Stockmayer model, the other is the Flory model. As Ziff and Stell (1980) showed, 
kinetically Stockmayer's model means keeping the original form of the kinetic equation 
unchanged, i.e. sol can only react with sol. Flory's model, on the other hand, means 
keeping the functional form of the total number of the free functionalities in the system 
unchanged, i.e. free functionalities can react as before irrespective of whether they are 
in the sol and  in the gel. 

We illustrate our method with the A, + A2 system and monodisperse initial condi- 
tions. First we consider Stockmayer's model, which means solving the kinetic equation 
(9)  after t >  t , ,  where t ,  is given by 

t c  = [ f ( . f - 2 ) N l - ' .  (34) 
After transformations (14) and (151,  for equation (16) with monodisperse initial 
conditions we have the solution 

Y = f N ( Z ,  +)T)1 -1+2L(Z~  +,VT)Z2 ( 3 5 )  
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Unfortunately, there is no  simple form for the solution of equation (9) after gelation. 
To obtain the solution we need to construct an equation for p (  t ) .  An easy way to get 
the equation is to replace 

z I  = exp( - j0‘ p (  t ‘ )  dt‘) z2 = 1 (37) 

in equation (33). 
Noting that in this case we have 

y = c  [ ( f - 2 ) k + 2 ] ~ , , z : ~ - ” ~ ” z , = p ( t )  exp(jor p ( t ’ )  dt‘)  

~ ( f )  exp 4( f )  = f N ( e x ~ [ - 4 ( t ) l + i . ( r )  exp 4 ( t )  Id exp[-24(f’)l  d t ’  )” 
+ 2 L ( e x p [ - b ( f ) l + p ( t )  exp 4(t) lo1 exp[-24(rr)l  dr’ ) 

(38) 
k ,  I 

(35) gives the relation which p satisfies: 

(39) 

where 4 ( t )  = J A  k ( t ’ )  dt’. 
The existence of the post-gel solution for a single-parameter coagulation equation 

was shown by Leyvraz and  Tschudi (1981). For the two-parameter coagulation equation 
(9), we have a similar situation. Introducing 

CL = exp 4 ( t )  (40) 
we have $ ( t ) =  $ ( t ) p ( t )  and  (39) can be written as 

Differentiating (41 1, we have 

I+-’( 1 ’ )  dt’. (42) 

Obviously (I;( t )  = 0 is a solution and this leads to equation (19), and the result (20), 
corresponding to the solution before gelation. It is not easy to get another solution 
from (42) and  our analytical method can only give the relation (39). 

For Flory’s model after gelation, the size distribution will keep the original form 
as (23). An important feature is that we can obtain the mass in the sol and in the gel, 
which is useful in polymer chemistry. For Flory’s model, we have the following kinetic 
equation: 

p + y = /  

where po =fN + 2L. This equation can be solved in the same way as equation (9) and  
gives a relationship which determines the time-dependent sol and gel masses. Ziff and 
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Stell (1980) used a time-dependent function 5(  t )  and gave the expression for the sol 
and the gel masses as a function of 5 ( t ) .  We think the formulation expressed in this 
paper is somewhat clearer. 

To solve equation (43), we introduce 

(44) G = Z ( f - 2 ) k + 2  I 
k l  1 z2 

k.1 

and 

aG PO 
az,  l+pot '  Y =- - z1 -  (45) 

We then have a partial differential equation from (43): 

ay la t  = y a y l a z , ,  (46) 

For monodisperse initial conditions (24), we have the solution 

y = Nf( Z I  + t ~ ) ~ - l +  2 L( Z I  + ty)z2 - ( 21 + ty ) ( f N  + 2 L ) .  (47) 

Set 

5 = Z I  + ty. (48) 

We have 

y = Nflf-'  +2L5~2  - 5 ( f N  + 2 L )  (49) 

and 

z1 = 5 - t [  Nfsf-l+2Llz2 - I ( f N  + 2 L ) ] .  

We further set z I  = z2 = 1 and equation (50) becomes 

(50) 

1 = 5 - t N f [ l f - l  - 51. (51) 

Obviously, 5 = 1 is a solution, which corresponds to the pre-gel solution. The other 
positive real solution can be obtained from 

( 5 2 )  5 + { 2 +  . . . + p =  1 If Nt 

corresponding to the post-gel solution. 
We calculate the total number of free functionalities of the gel first. 
From (44) we have 

In (53), a G / a z ,  can be obtained from (45), with y given in (47). After some algebra, 
we get the following fairly simple form for 5: 

I t  is not difficult, but tedious, to get Moo from (49). In doing this, we only need 
to perform an integration in terms of the parameter 5. The result is 
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It is then easy to get 

and 

L 
M -  5. 

O1 - 1 + (frv + 2L) t 

6. The A, + A, system 

In this section we briefly discuss the solution of the kinetic equation for the A,+A, 
system. The kinetic equation is written as (10). To solve this equation, we introduce 

where 

T = lo‘ exp( -2  lo‘’ I*( t”)  dt”) dt’. 

From equation (10) we have 

Equation (62) has the solution 

where Nkll, satisfies the following recursion relation: 

- 1 N k / h  = 4 c ( + r p u j g N r p e y q g .  
! + ] = A  
p + q = /  
e + g  = 11 

N k / h  and the recursion relation (64) have a physical explanation, which is just the 

Before gelation p satisfies (19) and the solution is given by (20). We have 
same as the one we have given for the A, + A ,  system. 

7 =  t ( l+pot ) - I  (65) 
where 
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and 

(67)  = xkl( l  + p o ~ ) - r ~  f - ~ ~ ~ + ~ + l ~ - ~ ~ ~ l  

The solution before gelation can be written as 

(68)  

The post-gel solution can be obtained in the same way as for the A, + A2 system and 
we hope to discuss this in a future publication. 

7. Conclusions and discussion 

The kinetic equation for copolymerisation can be established following Flory's two 
assumptions. We solved the kinetic equation for the A., + A? and A, + A, systems with 
arbitrary initial conditions. The kinetic method has been generalised to the copolymeri- 
sation system with deposition. Then it would be interesting to know if the statistical 
method and  branching theory can be used to obtain the exact result. The continuous 
version of the coagulation equation can be solved by using a Laplace transformation, 
but it is difficult to get the explicit expressions for arbitrary initial conditions. 

Appendix. Derivation of the result (22) 

Introducing the transformations (14) and (15),  we only need to solve equation (16). 
By using the generating function 

we have the partial differential equation 

The solution of (A2) is 

satisfying the initial condition 

where y = aG/az,. 
The Lagrange expansion gives 

Hence we have (22)  after calculating w (  t )  and related functions. 
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